Imagine this, cruising, in a pod, inside a tube at 750 mph! Insane, right, well that is what I thought so too when, a couple of years back, i heard about the Hyperloop Project, then it was theoretical, but when the likes of Space X’s CEO, Elon Musk put his foot down, this Utopian mode of transport just became a reality
[su_dropcap style=”flat”]H[/su_dropcap]yperloop One just conducted a successful test of its version of Elon Musk’s hyperloop. This Ambitious project just passed a huge test!
Deep in the Nevada desert on Wednesday morning, a linear accelerator propelled a small sled along a purpose-built test track to a speed of almost 187km/h in just over a second. It may just be a very early test but, the assembled media assured us, it means that the Hyperloop – the utopian transport system first mooted by technology entrepreneur Elon Musk – in 2013 is one step closer to reality.
The test shows that Hyperloop One has reached the technological heights of a 1996-era rollercoaster when it comes to its propulsion systems, but does nothing to calm very real doubts that the company will be able to deliver what it promises, when it promises, for the price it promises.
Unfortunately, the hurdles in the way aren’t problems that will be solved with cool media-friendly events such as firing a sled down a rail-gun in the desert. Instead, they’re boring issues such as land use, heat expansion and intra-city transport.
Musk’s proposal
But let’s go back to the start. The genesis of Hyperloop is a 57-page “alpha proposal” released by Musk in 2013.
The document aims high. It describes a revolutionary form of public transport, in which capsules containing 28 people would be fired along a railgun into low-pressure tubes, floating on a cushion of air at 1,200km/h on a half-hour trip from the outskirts of San Francisco to the outskirts of Los Angeles.
It’s obviously impressive but the more compelling aspects of Musk’s proposal aren’t to do with the claimed speed, rather the fact that he suggests it may be practical and affordable to achieve them.
After all, super-fast yet impractically expensive transportation solutions are 10 a penny. In a world where money’s no object, one could zoom between SF and LA in a hypersonic passenger jet; on a maglev train running through vacuum tubes deep underground; or simply by sitting on top of a solid-fuel rocket and being fired like a cruise missile from A to B.
Those technologies aren’t science fiction: they all exist today, but they’re impractically expensive to actually build to any useful scale.
So the really exciting figure in Musk’s proposal wasn’t 1,200km/h it was $6bn (£4.1bn). That was the cost he estimated for the initial SF/LA link, a 10th of California’s planned high-speed rail system between the two cities.
Musk’s promise was the same one heard time and again from Silicon Valley: the incumbent players are bloated, inefficient relics and they need to be disrupted by a lean startup that ignores established rules.
As such, it looks like nitpicking to point out the ways Hyperloop ignores the lessons of conventional rail projects. It’s supposed to be different! Cynicism isn’t helpful! Dare to dream big!
While the concept of a railgun-powered vacuum tube supersonic passenger capsule sounds like the sort of technology that overturns conventional wisdom, it still needs to be supported by what’s come before it. In at least one case, literally: As transportation engineer Alon Levy argued when the plans first emerged, Musk’s costings just didn’t add up. Musk’s Hyperloop was to run on viaducts, for instance, as was much of the high-speed rail plan; but he assumed a cost-per-metre of just one 10th that of the conventional railway.
“If Musk really found a way to build viaducts for $5 million per kilometer,” Levy wrote, “this is a huge thing for civil engineering in general and he should announce this in the most general context of urban transportation, rather than the niche of intercity transportation.”
Similarly, the proposal briefly discusses thermal expansion: as the steel of the tubes heats in the hot California sun, the metal expands. That expansion needs somewhere to go. In high-speed railways, rails are allowed to overlap at the ends, but that’s not possible in the Hyperloop, and so Musk has a different solution:
“Specially designed slip joints at stations will be able to take any tube length variance due to thermal expansion,” he explained. “This is an ideal location for the thermal expansion joints as the speed is much lower nearby the stations. It thus allows the tube to be smooth and welded along the high speed gliding middle section.”
But the thermal expansion over 560km of Hyperloop is around 300 metres. That’s less a “slip joint” and more “a different station”. It also poses major problems for anchoring the tube to the viaducts.